Aircraft measurements of nitrogen and phosphorus in and around the Lake Tahoe Basin: implications for possible sources of atmospheric pollutants to Lake Tahoe.
نویسندگان
چکیده
Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest fires could be important sources of both N and P.
منابع مشابه
CHAPTER THREE AIR QUALITY Steven
Introduction Lake Tahoe resides in a high elevation basin separated from the Sacramento Valley by the dominant Sierra Nevada divide along the Crystal Range. Lower ridges of the Carson Range to the east separate the lake from the Great Basin. These physical attributes define atmospheric processes in the Tahoe basin as much as define hydrological processes. The presence of the cold lake at the bo...
متن کاملFugitive dust emissions from paved road travel in the Lake Tahoe basin.
The clarity of water in Lake Tahoe has declined substantially over the past 40 yr. Causes of the degradation include nitrogen and phosphorous fertilization of the lake waters and increasing amounts of inorganic fine sediment that can scatter light. Atmospheric deposition is a major source of fine sediment. A year-round monitoring study of road dust emissions around the lake was completed in 200...
متن کاملRefractory dissolved organic nitrogen accumulation in high-elevation lakes.
The role of dissolved organic matter (DOM) as either a sink for inorganic nutrients or an additional nutrient source is an often-neglected component of nutrient budgets in aquatic environments. Here, we examined the role of DOM in reactive nitrogen (N) storage in Sierra Nevada (California, USA) lakes where atmospheric deposition of N has shifted the lakes toward seasonal phosphorus (P)-limitati...
متن کاملProjections and downscaling of 21st century temperatures, precipitation, radiative fluxes and winds for the Southwestern US, with focus on Lake Tahoe
Recent projections of global climate changes in response to increasing greenhousegas concentrations in the atmosphere include warming in the Southwestern US and, especially, in the vicinity of Lake Tahoe of from about +3°C to +6°C by end of century and changes in precipitation on the order of 5–10% increases or (more commonly) decreases, depending on the climate model considered. Along with the...
متن کاملDwarf mistletoe-host interactions in mixed-conifer forests in the sierra nevada.
ABSTRACT We determined the spatial pattern of dwarf mistletoe (Arceuthobium spp.) associated with two different conifer hosts, white fir (Abies concolor) and Jeffrey pine (Pinus jeffreyi), in forests around the Lake Tahoe Basin and at the Teakettle Experimental Forest, both located in the Sierra Nevada. We also examined a number of host variables and bark beetle incidence to determine how these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 36 23 شماره
صفحات -
تاریخ انتشار 2002